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A B S T R A C T  

The rate of a standard graded K-algebra R is a measure of the growth of 
the shifts in a minimal free resolution of K as an R-module. It is known 
that rate(R) = 1 if and only if R is Koszul and that rate(R) ~ re(I) - 1 

where m(I) denotes the highest degree of a generator of the defining ideal 
I of R. We show that the rate of the coordinate ring of certain sets of 
points X of the projective space pn  is equal to re(I) - 1. This extends a 
theorem of Kempf. We study also the rate of algebras defined by a space 
of forms of some fixed degree d and of small codimension. 

I n t r o d u c t i o n  

Let K be a field. A graded commuta t ive  Noethcr ian K-a lgebra  R -- (~iEN R~ is 

said to be s tandard  if R0 = K and R is generated (as a K-algebra)  by elements 

of degree 1. Denote by M the homogeneous maximal  ideal (~i>1 Ri of R. The 

min ima l  free resolution 

F: . . .  - ~  F i  - *  F ~ - I  --> . . .  - ~  Fo  I-+ K - +  0 

of K -- R / A ~  as an R-module  plays an impor t an t  role in the s tudy of the ho- 

mological properties of R. For instance one knows tha t  F is finite if and only if 

any finitely generated R-module  M has a finite free resolution as an R-module  

and, by the Aus l ande r -Buchsbaum Serre theorem, this is equivalent to the fact 

tha t  R is a polynomial  ring. There are several invariants  a t tached to F.  One 

is the Poincar~ series of R which is defined as the formal power series whose 
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i-th coefficient is the rank of the free module Fi. Another important invariant 

is the Backelin rate which measures the growth of the shifts in F. It is defined 

as follows. For any finitely generated graded R-module M and for every integer 

i _> 0, one sets 

t a (M)  = max{j: Wor/R(M, K)j  # 0} 

if TorR(M, K) # 0, and tiR(M) = 0 otherwise. Here Tor/R(M, K)j  denotes the 

j - th  graded piece of TorR(M, K).  Then the Backelin rate of R is defined as 

rate(R) = sup{t/R(g) - 1/i - 1}. 
i>2  

It turns out that the rate of any standard graded algebra is finite, see [A, ABH]. 

We have rate(R) >_ 1 and the equality holds if and only if R is Koszul, so that 

rate(R) can be taken as a measure of how much R deviates from being Koszul, 

see [Ba]. 

Consider a mininlal presentation of R as a quotient of a polynomial ring, i.e. 

R~-  S / I  

where S = K[Xl , . . . , xn]  is a polynomial ring and I is an ideal generated by 

homogeneous elements of degree > 1. Let m(I)  be the maximum of the degree of 

a minimal homogeneous generator of I. It follows from (the graded version of) 

[BH, Whm. 2.3.2] that t2(g)  = m(I),  thus one has 

rate(S/I)  > m(I)  - 1 .  

Let r be a mononfial order on S. Denote by in(I) the initial ideal of I with 

respect to r. In [BHV, Cor. 2.4, Thin. 2.2] it is proved that 

rate(S/I)  <_ rate(S/in(I)) .  

Further, for any monomial ideal J it is known (see [Ba, ERT] and also Example 

1.4) that rate(S/J)  = m(J)  - 1. Summing up, one has 

re(I) - 1 <_ rate(S/I)  <_ re(in(I)) - 1 .  

In particular, it follows that if I is generated by a Grhbner basis of forms of 

degree _< re(I) with respect to some coordinate system and some term order, 

then the rate is minimal, that is, rate(S/I)  = re(I) - 1. 
Another interesting class of standard graded K-algebras with minimal rate is 

given by the generic toric rings, see [GPW]. 
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The goal of this paper  is to determine tile rate of the coordinate ring of some 

finite sets of points in the projective space and of some algebras defined by a 

space of forms of small codimension. 

Let X be a set of points of the projective space p n  and let R be its coordinate 

ring and I be its defining ideal. In Section 3 we show that  rate(R) = re(I )  - 1 

under tile assumption that  the cardinality of X is (n+t-1) + c with 0 < c < n 
\ n / 

and that  every subset of X has the expected Hilbert flmction. Under these 

assumptions it follows also that  t = re(I) .  

Let R be an algebra defined by a space V of forms of degree t whose 

codimension (in the space of forms of degree t) is d. In Section 4 we show 

that  rate(R) = t - 1 if either d _< 1 or d < dixnR1 and V is generic. 

Our approach is based on the notion of generalized Koszul filtration. It  is an 

extension of the notion of Koszul filtration (see [CTV]) and it can be applied to 

the study of the rate of algebras whose defining equations have arbi trary degrees. 

We show that  if an algebra R has a generalized Koszul filtration whose ideals 

have generators in degree < t, then rate(R) _< t - 1. 

Indeed we show that,  under the above mentioned assmnptions and notation, 

the coordinate ring R of a set of points has a generalized Koszul filtration of 

ideals generated in degree less than t. This result can be seen as an extension of 

a theorem of Kempf  [K] who proved that  the coordinate ring of s _< 2n points 

in general linear position in P** is Koszul. Under the assumption of Kempf ' s  

theorem it has been shown in [CRV] that  R has also a special kind of filtration, 

called a GrSbner flag, which implies that  R is defined by a Gr6bner basis of 

quadrics. 

We do not know whether there exists an analogue of the notion of GrSbner 

flag which works for algebras defined by polynomials of degree higher than 2. We 

also do not know whether the defining ideal of a set of general points in p n  of 

cardinality (n+t-l~ + c with c < n has a GrSbner basis of forms of degree t. 

1. G e n e r a l i z e d  K o s z u l  f i l trat ion 

The notion of Koszul filtration of a standard graded K-algebra R has been 

introduced by Conca, Trung and Valla in [CTV]. It  was inspired by the work 

of Herzog, Hibi and Restuccia [HHR] on strongly Koszul algebras. We extend 

this notion to be able to deal also with algebras whose defining equations have 

arbi trary degrees. Let R be a standard graded K-algebra.  Let J be a homo- 

geneous ideal of R. We will denote by re(J )  the highest degree of a minimal 

homogeneous generator of J .  
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Definition 1.1: Let R be a standard graded K-algebra.  A family F of ideals of 

R is said to be a g e n e r a l i z e d  K o s z u l  f i l t rat ion  of R if: 

(1) The ideal (0) and the maximal homogeneous ideal f14 of R belong to F. 

(2) For every J E F different from (0) there exists W E F such that  W C J ,  

J / W  is cyclic, W: g E F and m(W)  < m(J) .  

One has 

PROPOSITION 1.2: Let F be a generalized Koszul tiltration of R and let d be an 

integer such that re(J) <_ d for every ideal J E F. Then 

t R ( R / J )  <_ m(J )  + d(i - 1) 

for all i _> 1 and for all J E F. In particular, we have 

rate(R) ~ d. 

Proof'. The second statement follows immediately from the first. In order to 

prove the first statement it is enough to show that  for all J E F and for all 

j > m ( J )  + d(i - 1) one has W o r ~ ( R / g , g ) j  = 0. Since every ideal in F is 

generated in degree < d, there are no infinite descending chains of ideals in F. 

Therefore we may argue by induction on i _> 1 and on J (by inclusion). If i = 1, 

then WorR(R/g, g ) j  = 0 for all j > re(J) .  If  J = (0), then TorR(R, K)  = 0 for 

all i > 1 and the assertion clearly holds. 

So we may assume that  i > 1 and J ¢ (0). Then there exists W E F such that  

W C J, J / W  is cyclic, W: J E F and m ( W )  <_ re(J). Set H = W : J .  Let x E J 

such that  J = W + (x), and set c = degx.  Note that  by the Nakayama Lemma 

one has x E J - JA4. Hence c <_ re(J) <_ d. By construction, J / W  ~- R / H ( - c ) .  

The short exact sequence 

0 -4 R / H ( - c )  "~ J / W  --+ R / W  --+ R / J  --+ 0 

yields the exact sequence 

TorR(R/W,  g ) j  --+ TorR(R/J ,  g ) j  -4 ToriR_I(R/H, g ) j - c .  

Now W C J ,  so by the inductive assumption, T o r R ( R / W , K ) j  = 0 for every 

j > m ( W )  + d(i - 1) and, in particular, for j > m(J )  + d(i - 1). Moreover 

Tor~_I (R /H,K) j_c  vanishes for j - c > m ( H )  + d(i - 2). In particular, it 

vanishes for j > re (J )  + d(i - 1) since c <_ m(J )  and m ( H )  < d. Now the first 

and the third terms of the sequence vanish for all j > re (J )  + d(i - 1), so the 

middle term vanishes in the same degrees. I 
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Remark 1.3: Let R = K [ X l , . . . , x n ] / I .  We have already said that rate(R) _> 

re(I) - 1. We remark that if R has a generalized Koszul filtration consisting of 

ideals J generated by elements of maximal degree d, then by the above proposition 

we get d >_ re(I) - 1. 

Example 1.4: An important class of rings with a generalized Koszul filtration 

are rings defined by monomials. Let R = K [ X l , . . . ,  xn]/I,  where I is generated 

by monomials. Let a be an integer with a _> rn(I). Consider the following family 

of ideals of R: 

F = {ideals generated by classes of monomials of degree _< a - 1}. 

We claim that F is a generalized Koszul filtration of R. To prove the claim, 

let I = ( n l , . . . , n p )  and let J be an ideal in F generated by the classes of 

the monomials, say, m l , . . . ,  ink. Take W c J generated by the classes of the 

monomials m l , . . . ,  ink-1. Since W : J is equal to 

(hi /gcd(ni ,  ink):  i = 1 , . . . ,  p) + ( m j /  gcd(mj, ink): j = 1 , . . . ,  k - 1)/I ,  

it follows easily that W : J is in F. 

By 1.2 one has that,  for every ideal J E F, we have 

t R ( R / J )  <_ re(J) + ( a -  1)(i - 1) 

for all i >_ 1. In particular, by taking a = re(I),  one has 

rate(R) = re(I)  - 1. 

The results of Example 1.4 have been observed also in [ERT, Sect. 4]. 

2. T h e  r a t e  o f  s o m e  s e t s  o f  p o i n t s  

Kempf proved in [K] that the coordinate ring R of a set X of s points of pn  in 

linear general position is Koszul provided s _< 2n. Later Conca, Trung and Valla 

[CTV] showed that,  under the same assumption, the algebra R has a Koszul 

filtration (i.e. a generalized Koszul filtration whose ideals are generated in degree 

1). 
The goal of this section is to extend the above results to a larger number of 

points. We will show that, under certain assumptions, the rate of a set of general 

points X is exactly one less than tile degree of the generators of the defining ideal 

of X. 
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We recall some notation. Let S = K [ x o , . . . ,  Xn] be the coordinate ring of P " .  

For every set of points X in p n  denote by I x  the defining ideal of X,  by Hx( i )  

the Hilbert function of S / I x  and by Px  (z) the Hilbert series of S / I x .  We have: 

THEOREM 2.1: Let X be a set of points in pn of cardinality IXl = (n+t - I )  + c 

where t is an integer and 0 <_ c < n. Assume that the Hilbert function of S / I x  

is maximal and that the points of X are in uniform position, that is, 

H y ( i ) = m i n { I Y l , ( n T : i ) }  

for every Y C_ X and for every i. Let R be the coordinate ring of X .  Then 

rate(R) = re(Ix)  - 1 = t - 1. 

To prove the theorem we will show that  R has a generalized Koszul filtration 

of ideals generated in degree < t. To this end we need some notation and some 

preliminary results. Set s = IX[ and denote by P1 , . . .  ,/:)8 E P'~ the points in X. 

Let P l , . . . ,  P8 be the corresponding prime ideals of S. The defining ideal of X 
$ 

is I x  -- Ni=l ~oi. Let Z be the set of points P 1 , . . . ,  Pc+l and Y -- X \ Z. Hence 

X = Z U Y  and 

Under the assumption of 2.1 there exists a hyperplane L = 0 passing through the 

points of Z and avoiding the points of Y. Similarly, there exists a hypersurface 

F = 0 of degree t - 1 passing through the points of Y and avoiding the points of 

Z. 

LEMMA 2.2: With the above notation, for every j >_ t we have 

[Ix + (L)]j = [Iz]j and [Ix + (F)]j  = [Iy]j. 

Proof Since the inclusions I x  + (F) C_ IF and I x  + (L) C Iz  are obvious, 

it is enough to prove that  Hs/Ix+(L)(J) = Hs / i z ( j )  and that  HS/Ix+(r)( j  ) = 

Hs/x~, (j) for every j _> t. One has the short exact sequences 

0 -+ ( S / I x :  L)[-1]  -~ S / I x  -+ S / I x  + (L) -+ O, 

0 -+ ( S / I x  : F ) [ - t  + 1] ~ S / I x  --+ S / I x  + (F) -+ O. 

Note that  
s s 5 

i----1 i=1 i----c+2 
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HR/(~,y)(j)  = HR/( .~ j ) ( j )  = 0 for evez:y j _> t. 

Proof: By Lemma 2.2, we have to prove that  

HsHz+(r )  (J) = Hs / I r+(T) (J )  = 0 

for every j _> t. By the uniform position property, we know that  

t--2 (n+i--1)Z i [(nTt--2~ __ 1]Zt--1 1 + CZ 
E i = 0  ~ i J ~- k t--1 ] 

and P z ( z ) -  P y ( z )  = 1 - z 1 - z 

Now the result follows since by assumption T ~ U~=I ~9i, and hence T is also a 

non-zerodivisor modulo I z  and modulo I y .  | 

As a corollary we have: 

COROLLARY 2.4: Let J be a homogeneous ideal o f  R.  I f  d contains either x and 

y, or x and f ,  then it is generated by forms o f  degree at mos t  t - 1. 

Proof: Suppose that  J contains x and y (resp. x and f ) .  By virtue of Lemma 

2.3 the ideal (x, y) (resp. (x, f ) )  contains Rt,  hence the minimal generators of J 

have degree _~ t - 1. | 

Now we are in the position to present the generalized Koszul filtration for R. 

HS/Ix+(L)(J)  = US/ Ix  (J) -- Us / Iy  (J - 1) and 

HsHx+(F)(J )  = Hs/Lx. ( j )  - H S / I z ( j  - t + 1). 

The conclusion follows since, by assumption, H x ( j )  = IXI for j >_ t, H y ( j )  = IY] 

f o r j _ > t - 1  a n d H z ( j ) = l Z ]  for j >  1. | 

In the following we let T E $1 be a linear form which is a non-zerodivisor 

on R = S / I x .  We denote by x, y and f the residue classes o f T ,  L and F 

respectively in R. Since L F  E I x ,  we have y f  = 0 in R. 

LEMMA 2.3: With  the above notation we have 
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PROPOSITION 2.5: Consider the following families of homogeneous ideals of R: 

S l  = {0,(x)},  

F2 = {J  such that J contains (x, y)}, 

F3 = { J such that J is generated by x, f and forms of degree t - 1}. 

Set F = F1 UF2 UF3.  Then F is a generalized Koszul filtration of R and every 

J in F is generated in degree <_ t - 1. 

Proo~ The  second s t a t ement  follows direct ly f rom 2.4. Condi t ion (1) of 

Definition 1.1 is clearly satisfied and also condit ion (2) for the ideal (x) is 

tr ivial ly satisfied. So we have just  to check condit ion (2) for the ideals in F2 

and F3. 

Let  us do it first for an ideal J in F2. Firs t  assume tha t  J = (x,y) ,  then  we 

take W = (x) E F1 and we have to check tha t  x : y E F. Since y f  = 0 we have 

(x, f )  C x : y. Thus,  by vir tue of Corol lary 2.4, the ideal x : y is generated by 

forms of degree at  most  t - 1. Since x is not a zero-divisor of degree 1 on R and 

since Rj = Sj for j _< t - 1, we may  conclude tha t  

( x ) :  (y) = (x , f ,  g l , . . . , gh )  

where 91, . . . ,gh  are elements of degree t - 1. Hence (x) : (y) is in F3. I f  

instead J contains proper ly  (x, y), say J = (x, y, a l , . . . ,  ak), then just  take W = 

(x, y, a l , . . . ,  ak-1). One has tha t  W and W : J are bo th  in F2 since they contain 

(x,y). 
I t  remains  to check condit ion (2) for an ideal J in F3. I f  J = (x, f ) ,  then 

we take W to be (x). Then  by construct ion we have tha t  W : J = (x) : ( f )  

contains (x, y) and hence W : J E F2. If  instead J contains proper ly  (x, f ) ,  say 

J = (x , f ,  g l , . . . , g k )  with deggi  = t - 1 ,  then take W = (x , f ,  g l , . . . , gk -1) .  One 

has tha t  W C F3 and W : J = W : gk = M since Rt C (x, f ) .  | 

Proof  of T he or e m 2.1: A s  a consequence  of  Propos i t i on  2.5 and P r o p o s i t i o n  1.2, 

we get  ra te (R)  _< t - 1. S ince  re(Ix)  >_ t, we have ra te (R)  = t - 1 = m(Ix )  - 1. 
| 

Remark 2.6: The  proof  of the theorem holds under weaker assumptions.  I t  is 

enough to assume tha t  

for Y = X and for every Y C X with  ]Y] <_ -(n + t - l ~ . "  
\ n ] 
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As a consequence of Theorem 2.1 one has that  the ideal I x  is generated in 

degree t. This has been shown already in [CaRV, Thm. 2.5] and it gives a 

positive answer to the "Ideal generation conjecture" (see ILl) for a set X of 

points in generic position with IX I = (,~+t-1) + c with 0 _< c < n. 

In [CRV] it has been shown that  the coordinate ring R of a set of s _< 2n 

points in P~ in linear general position has a special kind of filtration, called a 

Gr5bner flag. This implies that  R is defined by a Gr5bner basis of quadrics. We 

do not know whether these results can be extended to a set of points defined by 

equations of higher degree. More precisely, we do not know whether there exists 

an analogue of the notion of Gr5bner flag for algebras defined by polynomials of 

degree higher than 2 and we do not know whether the defining ideal of a set of 

general points of Pn  of cardinality (~+t-l~ + c with c < n has a GrSbner basis 
\ n ] 

of forms of degree t. 

3. Rate  of  algebras defined by spaces of  forms of  small codimens ion  

Let S = K [ x l , . . . , x n ]  and let R = S / I  be a standard graded k-algebra. We 

say that  R has a G t -ba s i s  if its defining ideal has a Gr5bner basis of forms of 

degree less than or equal to t with respect to some term order and some system of 

coordinates. As we have already noticed in the introduction, if R has a Gt-basis, 

then rate(R) _< t - 1, but the converse does not hold (see the examples in [ERT, 

Sect. 6]). 
If R has a G2-basis, then R is said to be G-quadratic. In [C] the first author 

studies the problem of whether an ideal I in S generated by a space of quadrics 

of low codimension has a GrSbner basis of quadrics. We study the corresponding 

problem for an ideal I generated by a space of forms of degree not necessarily two. 

Following the approach of [C], we will first of all establish a sufficient criterion 

for an algebra R to have a Gt-basis. 

LEMMA 3. i: Let  R be a standard K-algebra and let x be a non-zero linear form 

in R.  Suppose that  there exist two integers t , s ,  with 1 <<_ s < t, such that  

xS+lRt_s_ l  = 0 and xSRt_~ = Rt .  Then R has a Gt-basis, and R~ = 0 for i > t. 

Proof." We complete x to a basis of R1 with x l , . . . ,  x,~-l, and set xn = x. Let 

S = K [ y l , . . . ,  Yn]. We consider the presentation of R obtained by sending Yi 

to x~ for every i. Let I be the presentation ideal. By assmnption, I contains 

ys+ l¢  Moreover, for every b < s, and for every monomial q of degree t - b n ° t - s - l "  

in K[y l , .  •. ,  Yn-1], the ideal I contains a polynomial of the form y,~qb _ YaPS where 

p is a polynomial of degree t - s in S. 
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Fix on S the degree lexicographical order with Yl > Y2 > " ' "  > Y,~. Then  

in(ybnq - y~p) = y~q. Summing up, in(I)  contains all the monomials  of the form 

ybq with b ~ s and where q is a monomial  of degree t - b in Y l , . . - , Y , - 1 -  

It  follows tha t  in(I) tS1 = St+l,  hence in(I) ,  is generated in degree less than  

or equal to t and Rt+l = O. | 

To apply the criterion of Lemma 3.1 one has to find a non-zero linear form x 

in R, with x t = O. 

LEMMA 3.2: Let R be a standard K-algebra over an algebraically closed field K ,  

and let t be a positive integer. I f V  is a subspace of R1 such that dim V > dim Rt, 

then there exists a non-zero linear form x E V such that x t = O. 

Proof: Let n = d imV,  m = d imRt ,  and fix bases x b . . . , x ,  and Y l , . . . , Y m  

respectively of V and Rt. Let x be a non-zero element in V. Then x n E i = I  a i x i ,  

with ai E K for every i. I t  follows tha t  we may write x t = ~km=~ Fk(a~ , . . . ,  an)yk, 

where F k ( a l , . . . ,  an) is a hypersurface of degree t in the a / s ,  for every k. Thus 

{x C V, x =fi 0: x t = 0} is the zero-locus of the hypersurfaces 

F l ( a l , . . . , a n ) , . . . , F m ( a l , . . . , a n ) ,  

and hence it is a projective variety whose dimension is bigger than  or equal to 

( n -  1) - m > 0. | 

PROPOSITION 3.3: Let R = S / I  be a standard K-algebra. Assume that I is 

generated in degree <_ t, K algebraically closed and d i m R t  < 1. Then R has a 

Gt-basis. 

Proof: Set n -=- direR1. We may assume n > 1. If  dimR~ = 0, then the 

conclusion is trivially true. 

Let  d im Rt = 1. By Lemma 3.2, every 2-dimensional subspace of R1 contains a 

non-zero element x with x ~ -- 0. Therefore there exist n - 1 linearly independent 

elements, say x l , . . . ,  x ~ - l ,  in R1 such tha t  x~ = 0 for i = 1 , . . . ,  n -  1. If  for some 

i we have x~Rt-1 ~ 0, then take s the largest integer such tha t  x~Rt-1 ~ O, and 

since d i m R t  = 1, the assertion follows by Lemma 3.1. Otherwise, x iRt -1  = 0 

for i = 1 , . . . , n  - 1. I f  one presents R as K [ y l , . . . , y n ] / I  by sending y~ to 

x~ for every i, then one has tha t  It  is generated by the component  of degree 

t of the ideal (Yl , . - . ,  yn-1).  Since I is generated in degree < t, it follows tha t  

I C_ (Y l , . . . ,  Y,,-1), and hence R is not Artinian. Then d i m R i  = 1 for i >__ t. Since 

the component  of degree t of the ideal (Yl , . - . ,  yn-1)  is a monomial  space whose 
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Hilbert function coincides with that  of R from degree t on, we may conclude that  

R has a Gt-basis. | 

In general, if we consider an algebra such that  dim Rt < direR1, then by 

Lemma 3.2, there exists an element x • R1 "-{0} such that  x t = 0. Moreover, 

by Lemma 3.1, R has a Gt-basis provided x t - l R  1 = Rt. Since dimRt < direR1 

we may expect that  the above condition holds for an algebra which is general 

enough. This is what happens in the case t -- 2 (see [C, Sect. 4]). The next result 

shows that  the same holds for any t. The proof is an extension of that  of [C, 

Sect. 4], hence we give only a sketch and refer the reader to [C] for more details. 

Let m , t  and n be integers and let S = K[xl , . . . ,xn] .  We denote by 

Grass(m, St) the Grassmannian of the spaces of forms of degree t and codimen- 

sion m in St. The set Grass(m, St) is indeed a projective variety embedded via 

the Pliicker map in p N ,  where N = ( d i m  St~ _ 1. We identify Grass(m, St) with 
\ m ! 

the family of the algebras of the form S/I ,  where I is generated by a space of 

forms of degree t and codimension m. We say that  a property P holds for a 

generic algebra in Grass(m, St) if there exists a non-empty Zariski open subset 

U of Grass(m, St) such that  the algebra R = S/(V) has property P for every 

V • U .  

THEOREM 3.4: Let K be an algebraically dosed field, f i r  is a generic algebra 

in Grass(m, St) with m < n = dimR1, then R has a Gt-basis. 

Proof: The conclusion follows if we prove that  there exists a non-empty Zariski 

open subset of Grass(m, St) where the property "there exists an element x E 

R1 \ {0}  such that  x t = 0, and xt-lR1 = Rt" holds. Let V • Grass(m, St) and 

define 

x .  = {x e s ,  \ (0 } :  . t  e v} ,  Yv = ix e s ,  -.{0}: x t - l s ,  + v # s d .  

We show that  there exists a non-empty open subset U of Grass(m, St) such that  

X v  ~ Yv for every V C U. I f S  = K [ X l , . . . , x n ] ,  we may write x E $1 as 

~i~=1 c~ixi. It  follows ea~sily that  X v  is the zero-set of m polynomials f l , . . . ,  fm 

of degree t in the ai ' s .  If  we give an example of V such that  X v  ~= Yv and 

f l , . . . ,  fm are a regular sequence in K[ (~I , . . . ,  ctn], then we may conclude arguing 

as in the proof of [C, Thin. 10]. 
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We consider the subspace V of St generated by: 

x j x ~  -1 with m < j _< n, 

• ' n - x] 1 . . .  x~" with ~-~j=l zj = t, and in < t - 1, 

x j  t - x j x ~  -1 for every l < _ j < n .  

It is easy to see that Xn C X v  \ Yv .  In this case f l  = a t  + t a l a ~ - l , . . . , f m  = 

amt + t a m a ~  1 and clearly f l , . .  ., fm are a regular sequence in K [ a l , . .  . ,  an]. 
| 
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